Avanzado

Problemas de nivel nacional.
Problema

P6 Primer problema real de funcionales

Enviado por Samuel Elias el 11 de Noviembre de 2023 - 09:12.

Sea $\mathbb{N}$ el conjunto de los enteros positivos {1, 2, ...}. Determina todas las funciones $f: \mathbb{N} \rightarrow \mathbb{N}$ tales que cualesquiera $m, n \in \mathbb{N}$ se cumple al mismo tiempo que:

$$f(m+n) \ |\ f(m) + f(n)$$ $$f(m)f(n)\ | \ f(mn)$$

Nota: $a | b$ quiere decir que el número entero $a$ divide al número entero $b$.

Problema

P5 Concurrencia de 2 círculos y 1 segmento

Enviado por Samuel Elias el 11 de Noviembre de 2023 - 09:08.

Sean $ABC$ un triángulo acutángulo, $\Gamma$ su circuncírculo y $O$ su circuncentro. Sea $F$ el punto en $AC$ tal que $\angle COF = \angle ACB$, donde $F$ y $B$ están de lados opuestos respecto a $CO$. La recta $FO$ corta a $BC$ en $G$. La paralela a $BC$ por $A$ interseca a $\Gamma$ de nuevo en $M$. Las rectas $MG$ y $CO$ se cortan en $K$. Demuestra que los circuncírculos de los triángulos $BGK$ y $AOK$ concurren en $AB$.

Problema

P4 Un mago y sus fichas B/N

Enviado por Samuel Elias el 11 de Noviembre de 2023 - 09:03.

Dada una colección de varias fichas que pueden ser negras o blancas y que tienen, cada una, un número escrito en ellas, un mago hace el siguiente movimiento: Toca 2 de las fichas con distinto número y color, y la de número menor se convierte en una ficha idéntica a la otra. 

Sea $n$ un entero mayor o igual a 2. Para cada uno de los movimientos del 1 al $n$, el mago pone en la mesa una ficha negra o blanca con ese número. Luego hace su $movimiento$ para ir modificando la colección. 

Problema

P3 Regresa la Geo a la OMM

Enviado por Samuel Elias el 11 de Noviembre de 2023 - 08:53.

Sea $ABCD$ un cuadrilátero convexo. Si $M, N, K$ son los puntos medios de los segmentos $AB$, $BC$ y $CD$ respectivamente, y además existe un punto $P$ dentro del cuadrilátero $ABCD$ tal que, $\angle BPN = \angle PAD$ y $\angle CPN = \angle PDA$. Demuestra que $AB \cdot CD$ = $4PM \cdot PK$

Problema

P2 Germán y su obsesión con los polígonos regulares.

Enviado por Samuel Elias el 11 de Noviembre de 2023 - 08:47.

Los números del 1 al 2000 se encuentran colocados sobre los vértices de un polígono regular de 2000 lados, uno en cada vértice, de manera que se cumple lo siguiente: Si cuatro enteros $A, B, C, D$ cumplen que $1\leq A < B < C < D \leq 2000$, entonces el segmento que une los vértices donde están los números $A$ y $B$ y el segmento que une los vértices donde están $C$ y $D$ no se intersectan en el interior del polígono. Demuestra que existe un entero positivo que es un cuadrado perfecto tal que el número diametralmente opuesto a él no es un número cuadrado perfecto.

Problema

4.- El término 2023

Enviado por Samuel Elias el 17 de Julio de 2023 - 18:35.

Sean $x_1$, $x_2$, ..., $x_{2023}$ números reales positivos, todos distintos entre sí, tales que

$a_n$ = $\sqrt{(x_1 + x_2 + ... + x_n)(\frac{1}{x_1} + \frac{1}{x_2} + ... + \frac{1}{x_n})}$
 

es entero para todo $n$ = 1, 2, ..., 2023. Demuestra que $a_{2023} \geq 3034$.

Problema

2.- Revive la geo con una concurrencia

Enviado por Samuel Elias el 17 de Julio de 2023 - 18:13.

Sea $ABC$ un triángulo acutángulo con $AB < AC$. Sea Ω el circuncírculo de ABC. Sea S el punto medio del arco $CB$ de Ω que contiene a A. La perpendicular por $A$ por $BC$ corta al segmento $BS$ en $D$ y a Ω de nuevo en E ≠ A. La paralela a $BC$ por $D$ corta a la recta $BE$ en $L$. Sea ω el circuncírculo del triángulo $BDL$. Las circunferencias ω y Ω se cortan de nuevo en P ≠ B. Demuestra que la recta tangente a ω en P corta a la recta BS en un punto de la bisectriz interior del ángulo <$BAC$.

Problema

P7. El orden de $x$, $y$ y $z$ es independiente de $a$ y $b$.

Enviado por jesus el 26 de Junio de 2023 - 14:43.

Supongamos que $a$ y $b$ son dos números reales tales que $0 < a < b <1$. Sean :

\[x = \frac{1}{\sqrt{b}} - \frac{1}{\sqrt{a+b}}, \quad y = \frac{1}{b-a} - \frac{1}{b} \quad \textrm{y} \quad z =\frac{1}{\sqrt{b-a}} - \frac{1}{\sqrt{b}} \]

Muestra que $x$, $y$ y $z$ quedan siempre ordenados de menor a mayor de la misma manera, independientemente de la elección de $a$ y $b$. Encuentra dicho orden entre $x$, $y$ y $z$.

Problema

P6. Borrando números del pizarrón

Enviado por jesus el 26 de Junio de 2023 - 14:35.

Alka encuentra escrito en un pizarrón un número $n$ que termina en 5. Realiza una secuencia de operaciones con el número en el pizarrón. En cada paso decide realizar una de las dos operaciones siguientes:

  1. Borrar el número escrito $m$ y escribir su cubo $m^3$.
  2. Borrar el número escrito $m$ y escribir el producto $2023\cdot m$

Alka realiza cada una de las operaciones un número par de veces en algún orden y al menos una vez, y obtiene finalmente el número $r$. Si las cifras de las decenas de $r$ es un número impar, encuentra todos los valores posibles que la cifra de las decenas de $n^3$ pudo haber tenido.

Problema

P4. Encuentra todas las asignaciones f(m,n)

Enviado por jesus el 19 de Junio de 2023 - 18:27.
Se tiene un función $g$ tal que para todo entero $n$: \[ g(n) = \begin{cases} 1 &\quad \textrm{si } n \geq 1 \\ 0& \quad \textrm{si } n \leq 0 \end{cases} \] También se tiene la función $f$ que cumple lo siguiente para todos los enteros $n \geq 0$ y $m \geq 0$: \[f(0,m) =0 \quad \textrm{y}\] \[f(n+1, m) = \Big( 1 -g(m) + g(m) \cdot g\big(m-1 - f(n,m)\big) \Big)\Big(1+ f(n,m) \Big)\] Encuentra todas las posibles funciones $f$ que cumplen estas condiciones. Es decir, encuentra todas las asignaciones $f(m,n)$ que cumplan las propiedades de arriba para todos los enteros $n \geq 0$ y $m \geq 0$.
Distribuir contenido